Sampling Methods

MCMC Interactive Gallary

Gaussian Sampling

AST9240 - Gaussian Sampling

Multidimensional Gaussian

\[ \bm{x}\sim\mathcal{N}(\bm{\mu}, C) \]

where \(C\) is covariance matrix

\[ C=\langle \bm{x}\bm{x}^T\rangle - \langle\bm{x}\rangle\langle\bm{x}\rangle^T \]

The log-likelihood is

\[ \ln\mathcal{L}(\bm{x}|\bm{\mu})=\mathrm{const.} - \frac{1}{2}(\bm{x}-\bm{\mu})^TC^{-1}(\bm{x}-\bm{\mu}) \]

The sample of \(\bm\mu\) is

\[\bm{\mu}=\bm{x}+C^{1/2}\bm{\eta} \]

\(C^{1/2}\bm{\eta}\) is flunctuation term, and \(C^{1/2}\) satisfies

\[C^{1/2}(C^{1/2})^T=C\]

d = As+n

Often we have

\[\color{red}\bm{d}=A\bm{s}+\bm{n}\]

and covariance matrix of noise \(\bm n\)

\[ \langle\bm{n}\bm{n}^T\rangle = N \]

Here \(A\) can be pointing matrix, mixing matrix, etc in different contexts. The log-likelihood is

\[\ln P(\bm{d}|\bm{s}) = \mathrm{const.} - \frac{1}{2}(\bm{d}-A\bm{s})^TN^{-1}(\bm{d}-A\bm{s})\]

Take derivative of the likelihood and make it equal to zero

\[ \begin{aligned} \frac{\mathrm{d}\ln\mathcal{L}(\bm{d}|\bm{s})}{\mathrm{d}\bm{s}}&\propto-\frac{\mathrm{d}}{\mathrm{d}\bm{s}}(\bm{d}-A\bm{s})^TN^{-1}(\bm{d}-A\bm{s}) \\ &=A^TN^{-1}(\bm{d}-A\bm{s})+(\bm{d}-A\bm{s})^TN^{-1}A=0 \end{aligned} \]

The two terms \(A^TN^{-1}(\bm{d}-A\bm{s})\) and \((\bm{d}-A\bm{s})^TN^{-1}A\) are equivalent, and we get the maximum likelihood solution

\[ \bm{s}=(A^TN^{-1}A)^{-1}A^TN^{-1}\bm{d} \]

上面的求逆从数值上是非常困难的,所以我们经常写成下面这种形式

\[\color{red} (A^TN^{-1}A)\bm{s}=A^TN^{-1}\bm{d} \]

这就是 \(A\bm{x}=\bm{b}\) 的形式,可以用 Conjugate Gradient 的方法来求解(可以看Painless conjugate gradient快速掌握 CG 算法)。到此为止,我们还差一个 flunctuation term,需要求 \(\bm{s}\) 的协方差矩阵

\[ \langle\bm{s}\bm{s}\rangle - \langle\bm{s}\rangle\langle\bm{s}\rangle^T =(A^TN^{-1}A)^{-1} \]

实际上,上面这个操作把 \(\bm{n}\) 的协方差矩阵转换到 \(\bm{s}\) 的空间下。如果 \(\bm{d}\) 是 TOD 数据,\(\bm{s}\) 是一张天图,\(A\) 是 mapmaking 的操作,那么这就是把协方差矩阵从时间带到像素空间中,相当于误差传递的过程。

The sample is

\[ \bm{s}=(A^TN^{-1}A)^{-1}A^TN^{-1}\bm{d}+A^TN^{1/2}\bm{\eta} \]

With a prior on s

If the prior is gaussian, then

\[\ln P(\bm{d}|\bm{s}) = \mathrm{const.} - \frac{1}{2}(\bm{d}-A\bm{s})^TN^{-1}(\bm{d}-A\bm{s}) - \frac{1}{2}(\bm{s}-\bm{\mu}_s)^TS^{-1}(\bm{s}-\bm{\mu}_s)\]

The sample becomes

\[ (A^TN^{-1}A+S^{-1})\bm{s}=A^TN^{-1}\bm{d}+S^{-1}\bm{\mu}_s+A^TN^{1/2}\bm{\eta}_1+S^{1/2}\bm{\eta}_2 \]

The covariance matrix of \(\bm{s}\) is

\[ \langle\bm{s}\bm{s}\rangle - \langle\bm{s}\rangle\langle\bm{s}\rangle^T =(A^TN^{-1}A+S^{-1})^{-1} \]

在前景分析中,各种前景成分的 amplitude 可以采用 Gaussian sampling 的方法,因为 amplitude 和数据的关系是线性的,如果噪声是高斯的,那么前景的 amplitude 也是高斯的。

Inversion sampling

AST9240 - Inversion Sampling

在前景分析中,谱指数可以用 Inversion sampling 的方法,Inversion sampling 可以应用到任何概率分布上。

Metropolis sampling

AST9240 - Monte Carlo sampling methods

Metropolis-Hastings sampling

Allows for asymmetric transition rules.

Gibbs sampling

Basis of Commander3. See Gibbs Sampling in MCMC Interactive Gallary.

我们本来需要计算 \( P(h, g, s_\mathrm{cmb}, b|\bm{d}) \),采用 Gibbs 采样方法,我们只需要去计算

\[\begin{aligned} &P(h|\bm{d},g,s_\mathrm{cmb},b) \\ &P(g|\bm{d}, h, s_\mathrm{cmb}, b) \\ &P(s_\mathrm{cmb}|\bm{d}, h, g, b) \\ &P(b|\bm{d}, h, g, s_\mathrm{cmb}) \end{aligned}\]

而这些都是非常好计算的,甚至有一些有解析的形式。

Jinyi_gibbs_sampler


Author

Jinyi

Posted on

2021-11-08

Updated on

2023-04-07

Licensed under