Spherical Harmonics

Definition

参考 Spherical Harmonics USCS Physics 116C Fall 2012 的第一部分来推导拉普拉斯方程在球坐标下的解,并由此引入球谐函数

\[\color{black}Y_{\ell}^{m}(\theta, \phi)=(-1)^{m} \sqrt{\frac{(2 \ell+1)}{4 \pi} \frac{(\ell-m) !}{(\ell+m) !}} P_{\ell}^{m}(\cos \theta) e^{i m \phi} \]

下面是一个来显示不同球谐函数的脚本

import numpy as np
import matplotlib.pyplot as plt
from scipy.special import sph_harm
from matplotlib import cm

theta, phi = np.meshgrid(np.linspace(0, np.pi, 1000),
np.linspace(0, np.pi*2, 1000))
x, y, z = np.array([np.sin(theta) * np.sin(phi),
np.sin(theta) * np.cos(phi), np.cos(theta)])

cmap = cm.ScalarMappable(cmap=plt.get_cmap('bwr'))
def show_sph_harm(l, m):
plt.figure()
ax = plt.gca(projection='3d')
sph = sph_harm(m, l, phi, theta)
ax.plot_surface(x, y, z, facecolors=cmap.to_rgba(sph.real))
ax.set_axis_off()
plt.show()

由球谐函数的正交完备性,我们可以将任意一个 \(\theta\) 和 \(\phi\) 的函数进行球谐展开

\[f(\theta, \phi)=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^{m}(\theta, \phi) \]

Properties

由勒让德多项式的定义,可以知道

\[Y_{\ell}^{-m}(\theta, \phi)=(-1)^{m} Y_{\ell}^{m}(\theta, \phi)^{*} \]

Orthgonality

\[\int Y_\ell^m(\theta,\phi)Y_{\ell^\prime}^{m^\prime}(\theta,\phi)^*\mathrm{d}\Omega=\delta_{\ell\ell^\prime}\delta_{mm^\prime}\]

Laplace

\[\nabla^2 \equiv\frac{1}{\sin ^{2} \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\]

\[\color{purple} \nabla^2 Y_\ell^m(\theta,\phi)=-\ell(\ell+1)Y_\ell^m(\theta,\phi) \]

Addition Theorem

\[P_\ell(\bm{n}\cdot\bm{n}^\prime)=\frac{4\pi}{2\ell+1}\sum_m Y_\ell^m(\bm{n})Y_\ell^m(\bm{n}^\prime)^*\]

Flat Sky Approximation

平天近似就是当天区足够小的时候,可以用傅立叶变换替代球谐变换

\[\sum_{\ell m}T_{\ell m}Y_\ell^m(\hat{\bm n}) \rightarrow \sum_{\bm{k}} T_\bm{k}e^{i\bm{k}\cdot\hat{\bm{n}}}\]

在球谐变换中,不同 \(\ell\) 模式对应于不同尺度

\[\ell\sim\frac{\pi}{\theta}\]

所以从球谐变换到傅立叶变换,存在这样的替换关系

\[ l=2\pi k \]

Flat_Sky_Approximation.ipynb

Author

Jinyi

Posted on

2021-11-19

Updated on

2023-04-07

Licensed under